'천연가스'에 해당되는 글 2건

  1. 2012.12.17 석유 없어도 60년을 버틸 수 있는 에너지원 등장
  2. 2010.09.06 CNG와 LNG는 무엇이 다를까? (1)
석유 없어도 60년을 버틸 수 있는 에너지원 등장

최근 국제사회의 주요 화두로 떠오르고 있는 셰일가스가 우리나라에서도 이슈가 되고 있다. 지난 12월 12일에는 캐나다 벤쿠버에서 ‘제1회 한-캐나다 천연가스 포럼’이 개최돼 한국 정부와 캐나다의 셰일가스 개발 협력이 강화될 예정이라는 뉴스가 전해졌다. 그 다음날인 13일에는 서울 양재동에서 ‘셰일가스산업의 파급효과와 미래전망’이라는 주제로 세미나가 열려 셰일가스 개발이 전체 산업의 패러다임을 바꿀 것이라는 전망이 나왔다.

국제에너지기구(IEA)는 셰일가스 자원의 개발 확대를 두고 ‘에너지 혁명’이라는 표현을 사용했을 정도다. 그러나 많은 언론에서는 셰일가스가 새로운 에너지원이라는 사실만 강조할 뿐, 셰일가스가 정확히 무엇인지에 대해서는 분명한 정보를 찾아보기 어렵다.

셰일가스는 값싼 천연가스의 등장이라는 의미에서 차세대 에너지원으로 주목받고 있지만, 일반적인 천연가스와는 다르다. 천연가스는 가스가 생산되는 지층의 특성에 따라 전통 가스와 비전통 가스로 분류되는데, 이를 정확히 이해하려면 석유가 생성되는 과정을 살펴볼 필요가 있다.

석유는 동식물 사체 등이 오랜 퇴적과정을 거치면서 높은 온도와 압력을 받아 생성된다. 이렇듯 유기물이 석유로 변환되는 지층을 근원암이라 하는데, 입자가 조밀해 유체가 잘 흐르지 않는다. 대표적인 근원암이 바로 점토가 굳은 셰일이다. 근원암에서 만들어진 석유는 높은 압력으로 인해 근원암에서 밀려나와 상대적으로 입자가 큰 사암이나 탄산염암으로 구성된 저류암으로 이동한다. 이렇듯 저류암은 큰 입자 사이사이의 빈틈에 원유나 가스를 품고 있다.

근원암을 빠져나온 석유는 근처의 암석을 타고 위로 계속 이동하다 덮개암이라는 매우 작은 입자의 암석으로 차단되면 멈춘다. 전통 가스는 이렇게 덮개암에 막혀서 모인 가스를 말한다. 이 공간에 수직으로 구멍을 뚫어 가스를 얻는 것이 전통 가스 생산과정이다.

반면 비전통 가스는 저류암이 아닌 곳에 존재한다. 상대적으로 입자가 치밀한 암석에 갇혀 있어 움직이기 어렵기 때문에 회수하려면 특별한 기술이 필요하다. 따라서 생산하려면 우선 전통 가스를 얻을 때처럼 수직으로 구멍을 뚫고 저류층(원유나 가스가 지하에 모여 쌓여 있는 층)에서 직각으로 꺾이는, 즉 저류층과 수평이 되도록 시추관을 설치해야 한다.

대표적인 비전통 가스인 셰일가스는 근원암인 셰일 내부에 존재하는 가스다. 때문에 셰일가스를 얻기 위해서는 ‘ㄴ’자 모양으로 시추관을 굴착하는 기술과 물, 모래, 화학물질 등의 혼합물을 고압으로 투입하는 수압파쇄기술이 필요하다. 시추관에 혼합물을 고압으로 투입하면, 셰일과 수평으로 위치한 시추관으로 혼합물이 빠져나가(수평 시추관에는 구멍이 송송 뚫려있다.) 셰일에 균열을 만든다. 이 균열 사이사이에 모래가 밀려들어가 균열을 유지하게 되고, 이때 압력을 낮추면 갇혀 있던 가스가 새어나와 시추관을 통해 다시 지상으로 분출되는 것이다.



[그림]셰일가스가 매장된 지층의 위치. 그림 출처 : 위키미디어



셰일가스를 얻기 위해서는 시추관을 수평으로 설치하는 기술과 수압파쇄기술 외에도 저류층의 생산성 평가를 위한 높은 기술력이 요구된다. 그러나 이러한 기술 축적은 단기간 내에 이루어질 수 있는 것이 아니다. 때문에 각국의 에너지 기업은 개발 역사가 가장 긴 미국 내 셰일 광구(셰일을 채굴할 수 있도록 허가된 구역)에 대한 투자에 나서고 있다.

이렇게 채굴할 수 있는 셰일가스 매장량은 현재 확인된 전통 가스 매장량의 3분의 1에 달한다. 이는 2011년 세계 천연가스 소비량 기준으로 향후 60년간 쓸 수 있는 막대한 양이다. 이 중 캐나다 지역의 셰일가스 매장량이 전체 셰일가스 매장량의 약 6%로 가장 높다. 미국은 자체적으로 셰일가스를 생산하면서 2009년에는 러시아를 제치고 세계 1위의 천연가스 생산국으로 부상했으며 이로 인해 이전에 계획했던 LNG 수입을 중단했다. 셰일가스 생산량은 2030년까지 꾸준히 증가해 세계 천연가스 시장에 커다란 영향을 줄 것으로 예상된다.

2011년 기준 세계 산업과 경제 시스템을 이끄는 에너지원은 석유(33%), 석탄(31%), 천연가스(24%)로 천연가스의 비중이 가장 낮다. 하지만 셰일가스의 본격적인 개발로 새로운 에너지 시대가 열릴 수 있다. 현재 천연가스의 한계는 수송용 에너지원으로 석유를 대체할 수 있느냐이다. 2050년까지 기체를 액체로 바꾸는 ‘GTL(Gas to Liquid)’ 기술이 발전한다면 천연가스가 석유를 대체해 주 에너지원의 역할을 담당하게 될지 모른다.

전 세계의 에너지 지각변동은 이미 시작됐다. 지난 1월, 한국가스공사는 미국과 2017년부터 20년 동안 연간 350만 톤의 셰일가스를 공급받는 계약을 체결했다. 이제는 천연가스 사용량을 처리, 운송하기 위한 가스 도입 및 처리 시설 확충(LNG설비, 가스배관 등), 소규모 가스발전소 시설들의 건설 및 운영 등을 위한 인프라 구축 등이 대규모로 필요한 시점이다. 에너지 혁명이라는 큰 파도에 맞서 적응할 수 있는 국가적 계획과 지원이 필요한 시기다.

글 : 강주명 서울대 에너지시스템공학부 교수
저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

얼마 전 서울시 성동구 행당역 주변에서 ‘CNG 시내버스’가 운행 도중에 폭발해 8명이 부상을 당했다. 연료통 손상과 압력조절밸브 오작동(誤作動)이 사고의 원인으로 밝혀지면서 ‘가스’를 사용하는 시내버스의 안전성 논란이 일고 있다. 전국에 무려 2만 5,000대의 CNG 버스가 운행되고 있기 때문이다.

가솔린이나 디젤보다 폭발력이 높은 가스연료를 사용하는 것은 비단 시내버스만이 아니다. 시내에서는 LPG 택시들이 다니고 있고, LNG는 정부에서 장거리 운행버스나 트럭의 연료로 보급을 추진하고 있다. LNG와 CNG, 그리고 LPG 등은 어떤 연료일까?

사실 LNG(Liquefied Natural Gas 액화천연가스)와 CNG(Compressed Natural Gas‧압축천연가스)는 둘 다 메테인(methane)을 주성분으로 하는 천연가스의 ‘일란성 쌍둥이’다. 메테인은 비중이 0.555이므로 LNG와 CNG도 공기보다 가볍다. 천연가스는 가솔린이나 LPG에 비해 황과 수분이 적게 포함돼 있고 열량이 높은 청정에너지로 현재 가정용 도시가스로 널리 사용되고 있다.

천연가스는 많은 장점에도 불구하고 가솔린이나 디젤보다 한참 늦게 에너지원으로 이용됐다. 기체 상태의 천연가스는 부피가 커서 충전과 운반, 보관이 어려웠기 때문이다. 하지만 20세기 중반에 천연가스를 영하 162도 이하로 냉각시켜 LNG로 만드는 기술이 개발되면서 사정이 달라졌다. 액화된 천연가스 부피가 1/600로 감소(비중도 낮음)하므로 초대형 LNG 전용 운반선으로 수송할 수 있기 때문이다.

LNG는 천연가스의 부피를 크게 줄일 수 있다는 장점이 있지만 버스나 자동차의 연료로 이용하는 데는 한계가 있다. 버스나 자동차에서 LNG를 안전하게 이용하려면 초저온 탱크를 달아야 하는데, 이 탱크는 소형화하는 것도 어렵고 비용도 비싸기 때문이다. 그러다 보니 LNG는 상대적으로 크기가 크고 운행거리가 긴 시외버스나 대형화물차의 연료로 연구되고 있다.

반면 CNG는 천연가스를 200기압 이상의 고압으로 압축한 것이다. 운반해 온 LNG를 상온에서 기화시킨 후 압축하면 CNG가 만들어지는데, 이 과정에서 부피가 늘어나 LNG의 3배가 된다. 이 때문에 1회 충전 시 운행 가능한 거리가 너무 짧다는 단점이 있다. 같은 크기의 연료탱크에 실을 수 있는 천연가스는 CNG가 LNG의 1/3밖에 안 되기 때문이다.

하지만 CNG를 연료로 사용하면 냉각과 단열 장치에 필요한 비용을 절감할 수 있어 LNG에 비해 경제적이다. 또한 시내버스용으로 이용하면 연료 충전량이 적어도 무리가 없다. 게다가 정부가 친환경 에너지원을 공급하기 위해 보조금 정책을 펴고 있어 CNG 시내버스가 급속히 늘어나고 있다. 불과 10년 전만 해도 대다수의 버스는 디젤엔진을 장착했으나, 향후 2~3년 안에 전국의 모든 시내버스가 CNG버스로 바뀔 전망이다.


LPG(Liquefied Petroleum Gas)는 LNG, CNG와 뿌리가 다르다. 흔히 액화석유가스라고도 부르는 LPG는 실질적으로는 프로페인(propane)과 뷰테인(butane, 일명 부탄가스)의 혼합 형태로 많이 사용한다. 원유의 채굴이나 정제과정에서 생산되는 기체상의 탄화수소가 발생하게 되는데, 여기에 프로페인과 뷰테인이 많이 포함돼 있다. 라이터에 많이 사용하는 뷰테인이나, 가정용 연료료 많이 사용하는 프로페인 모두 상온의 기체상태에서는 공기보다 무겁다.

프로페인과 뷰테인은 끓는점이 낮기 때문에 상온에서 소형의 가벼운 압력용기(봄베)에 쉽게 충전할 수 있다는 것이 최대의 장점이다. 즉 상온에서 약간의 압력만 가하면 액화돼 프로페인은 약 270분의 1, 뷰테인은 약 240분의 1로 그 부피가 줄어든다. 덕분에 간편하게 압력용기에 담아 운반할 수 있다. 충전과 운송 그리고 보관이 편리하다보니 가정용·영업용 연료는 물론 택시 등 자동차 연료로도 널리 쓰이고 있다.

LPG를 자동차 연료로 이용할 경우 기온에 따라 프로페인과 뷰테인의 혼합 정도를 달리 하는데, 더운 지역으로 갈수록 뷰테인의 함량이 점점 더 높아진다. 자동차 연료로서의 LPG는 옥탄가가 매우 높은 반면에 출력이 떨어지는 단점이 있어, 버스 같은 대형 차량보다 택시나 승용차 같은 소형 자동차에 많이 쓰인다. 또한 LPG는 누설되면 부피가 270배로 늘어나는데다, 공기보다 무거워서 밀폐공간에 갇히기 때문에 폭발위험이 크다.

LNG와 CNG, LPG 같은 가스가 자동차 연료로 확대되는 것은 이들 연료가 친환경적이기 때문이다. 이들은 연소 과정에서 유해물을 거의 발생시키지 않는데다 가솔린이나 경유보다 CO2 방출량이 적다.

휘발유의 한 성분인 옥테인과 프로페인 그리고 천연가스 주성분인 메테인을 비교해 보면 옥테인은 3.72㎉의 에너지를 생성할 때 1g의 CO2를 발생시킨다. 반면 프로페인은 4.02㎉, 메테인은 4.84㎉를 얻을 때 1g의 CO2가 나온다. 즉 동일한 에너지를 얻는다면 메테인, 프로페인, 옥테인 순으로 CO2를 발생시킨다는 의미다.

LNG와 CNG 그리고 LPG도 엄격하게 관리만 된다면 크게 문제가 되지 않는다. 또한 탱크 내 특수소재로 스펀지 같은 구조로 만들어 35기압 정도에서 거의 같은 용량의 메테인 가스를 저장할 수 있는 가볍고 작은 CNG 저장 탱크가 개발되며 기술적인 진보도 이뤄지고 있다. 이렇게 되면 우려됐던 안전성 문제는 해결될 수 있을 것이다.

글 : 유상연 과학칼럼니스트
저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
1 
BLOG main image
생활에 밎줄 긋는 과학이야기♡ -KISTI의 과학향기-
by 과학향기

카테고리

분류 전체보기 (1178)
과학향기 기사 (892)
과학향기 이벤트 (1)
과학향기 독자참여 (1)
이런주제 어때요? (1)

달력

«   2017/08   »
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    
tistory!get rss Tistory Tistory 가입하기!
Clicky Web Analytics

티스토리 툴바