눈(雪) 위의 스포츠! 스키와 스노보드 정복하기

겨울이라는 계절에 만나게 되는 하얀 눈은 무조건 사랑할 수도 마냥 미워할 수도 없는 애증의 대상이다. 첫눈이 오면 사랑하는 사람과 만날 약속을 잡기도 하고 새하얗게 변한 풍경을 바라보며 따뜻한 음료를 마시는 것도 즐거움 중의 하나다. 한편으로 1cm도 쌓이지 않은 눈 때문에 도시 교통이 마비되기도 하고 미끄러운 줄 모르고 눈 쌓인 길을 걸었다가 심하게 넘어져 부상을 입기도 한다.

푹신하게 쌓여서 통행을 방해하고 쉽게 미끄러져 불안함을 주는 눈의 단점을 오히려 적극적으로 이용하는 사례가 있다. 겨울 스포츠의 꽃이라 불리는 ‘스키’와 ‘스노보드’다. 전 세계에서 스키와 스노보드를 즐기는 인구는 6천만 명에 달하며 우리나라도 2013년 초 한국갤럽이 실시한 설문 조사에서 성인의 36%가 ‘탈 줄 안다.’라고 대답해 10년 만에 두 배 이상 증가했다.

둘 중에서 원조는 당연히 스키다. 스키는 인류의 역사와 함께했다고 말할 정도로 오랜 전통을 가지고 있다. 가장 오래된 스키 장비는 기원전 6천 300년까지 거슬러 올라간다. 나무와 동물의 뼈를 평평하고 길쭉하게 깎아 잘 미끄러지게 만든 스키 형태의 신발도 세계 곳곳에서 발견되고 있다.

스키의 어원은 눈이 많이 내리고 지형이 험해 경사가 심한 북유럽 지역에서 찾아볼 수 있다. 신발 밑에 묶어 눈 쌓인 경사지를 미끄러져 내려가는 널빤지 모양의 플레이트 장비가 노르웨이에서는 쉬드(skid), 스웨덴에서는 휘다(skida), 핀란드에서는 숙시(suksi)로 불렸고 오늘날의 스키(ski)가 됐다.

스키는 19세기까지 별다른 변화가 없다가 1980년 금속으로 만든 바인딩 장치가 개발됐다. 신발과 플레이트를 단단히 결속시키면서 조종성이 향상됐고 그만큼 안정성도 높아졌다. 속도가 빨라지고 관련 인구가 늘어나면서 이제는 플레이트 이외에 다양한 장비를 갖춰야 스키를 탈 수 있게 됐다. 지팡이처럼 생긴 기다란 폴, 발목 고정을 담당하는 방수 부츠, 이물질이나 밝은 빛으로 눈이 상하는 것을 막는 고글, 충격으로부터 머리를 보호하는 헬멧, 동상과 부상을 방지하는 장갑, 바람을 막아 체온을 적절하게 유지시키는 스키복 등이다.

스키 장비 중의 핵심은 플레이트다. 눈 위에서 잘 미끄러짐과 동시에 조종에 따라 정확하게 반응할 수 있어야 한다. 그런데 바닥이 평평한 스키 플레이트는 왜 그렇게 쉽게 미끄러지는 것일까. 눈과 플레이트 모두 고체이므로 당연히 마찰력이 생겨서 속도가 줄어드는 게 정상이 아닐까.

스키 플레이트는 중력과 마찰력이라는 두 가지의 힘을 적절히 조절함으로써 미끄러지기도 하고 멈추기도 한다. 중력은 물체를 지구 중심으로 끌어당긴다. 평평한 곳에서는 운동 방향과 직각이 되기 때문에 쉽게 움직일 수 없지만 경사가 심할수록 중력의 작용이 운동 방향에 가까워져 이동이 쉬워진다. 산이 높은 교외에 스키장이 위치한 이유다.

마찰력을 줄이는 것도 플레이트를 미끌어지게 하는 또 하나의 방법이다. 일반적으로 고체보다는 액체의 마찰력이 덜하므로 눈에 열을 가해 녹이면 그만큼 쉽게 미끄러질 수 있다. 프랭크 보우든(Frank P. Bowden) 영국 케임브리지 대학 교수는 1939년 스위스 알프스에서 가장 높은 융프라우요흐에서 스키 실험을 진행했다. 평소의 눈은 영하 상태의 온도를 유지하지만 중력으로 인해 플레이트가 무게를 가해 경사면을 미끄러지면 압력과 마찰열이 발생해 결국 녹아내려 마찰력이 줄어든다는 분석이다.

그러나 스키 플레이트의 속도가 높아지거나 기온이 심하게 낮아지면 눈을 녹일 만한 시간적 여유가 줄어든다. 이때는 플레이트 밑면에 왁스를 발라 더욱 미끄럽게 만드는 방법이 있다. 보우든 교수는 1953년 여러 종류의 왁스로 후속 실험을 진행해 정확한 마찰계수를 찾아냈다. 노르웨이와 스위스와 같은 산악 지역에서 전통적으로 사용해온 왁스는 플레이트의 마찰력을 평소의 절반으로 줄여주었다. 그래도 마찰력이 가장 작은 순간은 섭씨 0도 가까운 온도에서 눈이 녹기 시작할 때다. 너무 추운 날씨에는 스키를 제대로 타기가 어렵다는 뜻이다.

마찰력을 줄여 미끄러짐을 유지해야 하는 것은 스노보드도 마찬가지다. 스노보드는 여름철에 파도타기를 즐기던 사람들이 겨울에도 서핑이 가능하도록 고민하는 과정에서 탄생했다. 1963년 중학교 2학년의 미국 청소년 톰 심스(Tom Sims)는 크리스마스 휴가 때도 파도타기를 즐길 수 있도록 서핑보드를 약간 개량해 눈 위에서 타는 ‘스너퍼(Snurfer)’를 선보였다. 1971년에는 ‘스노보드(snowboard)’로 이름을 바꾸고 본격적으로 사업에 뛰어들었다.

최초의 스너퍼 대회는 1968년부터 개최됐고 1980년에는 스노보드 대회로 명칭을 바꾸어 계속됐다. 스노보드는 스키보다 훨씬 더 빠른 속도로 전파됐다. 1993년 미국의 스포츠 전문 케이블 방송 ESPN이 스노보드 대회를 중계한 후, 1998년에 동계 올림픽 정식 종목으로 채택됐다. 지금은 1천만 명이 넘는 사람들이 세계 곳곳에서 스노보드를 즐기고 있다.

스키와 스노보드를 제대로 즐기려면 마찰력을 적절히 높여주는 방법도 알아야 한다. 마찰력이 없으면 경사지를 내려오면서 속도가 점점 높아지고 결국에는 통제 불가능한 상태에 이르기 때문이다. 안전을 확보하기 위해서는 적절한 속도를 유지하는 방법을 알아야 한다. 스키와 스노보드는 미끄러져 내려오면서 속도를 높이되 적절한 순간에 턴(turn)이라는 회전 운동을 실행한다.

평평한 바닥에 스키 플레이트를 높고 옆에서 바라보면 ‘캠버(camber)’라 불리는 가운데 부분이 약간 떠 있다. 사람이 플레이트 위에 올라서면 무게에 의해 캠버가 땅에 닿으면서 전체가 평평해져 미끄러짐이 극대화된다. 반면에 턴을 할 때는 몸과 다리를 한쪽으로 기울여 ‘에지(edge)’라 불리는 플레이트 양쪽 날이 눈 속을 파고들게 한다. 이때는 캠버가 수평보다 더 아래로 내려가는 ‘리버스 캠버(reverse camber)’ 현상이 발생해 마찰력이 커진다. 또한 눈과 플레이트 사이에 곡선이 형성돼 자연스럽게 방향 전환을 할 수 있다.

스노보드 기술 중 재빠르게 회전하며 고속으로 하강하는 ‘카빙 턴(carving turn)’은 옆 날 에지만 이용하기 때문에 보드 밑바닥 면 전체를 사용하는 ‘슬립 턴(slip turn)’ 기술보다 속도를 30% 이상 높일 수 있다. 턴을 할 때 발가락이나 발꿈치 방향 중에서 눈에 닿는 부분에 더욱 힘을 주어 리버스 캠버 현상을 일으키고 에지를 이용해 빠르게 회전하는 것이 비결이다. 스키와 스노보드 선수들이 몸을 심하게 기울이는 것도 에지를 세워서 속도를 유지하기 위해서다.

카빙 턴을 할 때는 방향 전환에 맞춰 무게 중심을 세심하게 이동시켜야 한다. 경사지를 고속으로 내려갈 때 몸을 심하게 기울이면 중력의 작용이 커지기 때문에 바닥에 쓰러질 위험이 있다. 반대로 몸을 기울이지 않으면 원심력으로 인해 회전 중심의 바깥쪽으로 넘어진다. 두 힘을 적절하게 유지시키는 것이 카빙 턴의 비결이다.

스키와 스노보드는 빠른 속도로 멋지게 회전해서 눈 덮인 경사지를 미끄러져 내려오는 겨울 스포츠다. 스릴이 커질수록 사고 위험성도 높아지므로 반복적인 훈련을 통해 정확한 회전 기술을 익히고 마찰력과 회전력을 적절히 제어해야 안전하게 즐길 수 있다.

글 : 임동욱 과학 칼럼니스트

저작자 표시 비영리 변경 금지
신고
[실험] 엔진 없이 비탈길 오르는 바퀴

우리가 어딘가로 이동하기 위해 타는 자전거나 자동차, 비행기 등에는 모두 바퀴가 사용돼요. 바퀴는 6,000여 년 전 지금의 이라크 땅 수메르에서 만들어졌어요. 바퀴가 생기고 나서 물건을 옮기거나 여행하는 일이 훨씬 쉬워졌지요.

여기서 잠깐 바퀴의 모양을 살펴볼까요? 크기나 재질은 달라도 모든 바퀴의 모양은 ‘원’이에요. 어느 한 군데 모난 곳 없는 둥근 생김새 덕분에 앞으로 굴러가야하는 바퀴 모양으로는 제격이지요. 그런데 아무리 원 모양이어도 계속 굴러가기 위해서는 힘을 가해줘야 해요. 자동차에는 엔진이 있어 바퀴를 굴려 달릴 수 있답니다.

하지만 엔진 없이도 비탈길을 올라가는 바퀴를 만들 수 있어요. 바로 ‘무게중심’의 원리를 이용하면 말이죠!


[교과과정]
초 6-2 에너지와 도구
중 1 힘과 운동

[학습주제]







무게중심은 물체 각 부분에 작용하는 중력들이 모아지는 작용점을 말해요. 쉽게 설명하면 물체의 무게가 어느 쪽으로도 치우치지 않도록 공평하게 나눠주는 지점이지요. 무게중심과 떼려야 뗄 수 없는 사이가 있는데, 바로 중력이에요. 중력이 있어야 무게가 있고, 그래야 무게의 중심이 있겠지요?


무게중심은 아래에 있을수록 안정하답니다. 오뚝이는 아랫부분이 무겁게 만들어져 바닥과 가까운 곳에 무게중심이 위치하지요. 때문에 넘어져도 금방 균형을 되찾고 다시 일어나요. 실험에서 깔때기 모양의 종이 두 개의 입구 부분을 맞붙이면 깔때기가 마주 붙은 중심부가 무게중심이 돼요. 바퀴가 굴림대를 따라 올라가는 모습을 옆에서 보면 [그림]처럼 바퀴의 중심부가 점점 굴림대에 가까이 가는 것을 볼 수 있어요. 바퀴 자체는 언덕 위쪽으로 올라가지만, 바퀴의 무게중심은 바닥에 가까워져 가는 것이지요. 때문에 동력 없이도 자연스레 경사진 비탈길을 따라 올라가는 것처럼 보이는 거랍니다.


[그림]깔때기 두 개를 붙인 바퀴의 무게중심은 점점 비탈길 바닥에 가까워진다.

우리 눈에 보이는 모든 물체에는 무게중심이 있어요. 자동차, 항공기, 선박 등 우리가 이용하는 운송 수단도 무게중심을 고려해 설계됩니다. 항공기나 선박은 땅에서 달리는 교통수단보다 몸체의 균형이 대단히 중요해요. 선박은 큰 파도나 폭풍을 만나도 가라앉지 않도록 무게중심이 선박 밑에 위치하게 설계하지요. 무게중심이 잘못 만들어지면 치명적인 사고로 이어질 수 있어요.

바닷가에서도 무게중심을 찾을 수 있어요. 방파제에 가면 삐죽빼죽한 커다란 구조물들이 잔뜩 쌓여 있는 걸 볼 수 있지요. 이것은 4개의 뿔을 가진 ‘테트라포드’로, 파도나 해일을 막아 방파제를 보호하는 역할을 해요. 테트라포드의 뿔 4개를 연결하면 정사면체 구조가 되지요. 그런데 다양한 도형 중 왜 하필 정사면체 구조를 사용한 것일까요? 정사면체의 무게중심은 바닥에 있어요. 정다면체 중 정사면체의 무게중심이 가장 아래쪽에 위치하고 있어 안정적이기 때문이랍니다.

오리가 걸을 때의 모습을 자세히 살펴봐도 무게중심의 변화를 알 수 있어요. 오리가 뒤뚱거리며 걷는 모습은 날지 못 하는 새가 걷는 모습과 비슷하지요? 이들은 모두 머리를 앞뒤로 흔들며 아장아장 걷지요. 머리를 앞으로 움직이는 것은 몸통의 무게중심을 앞쪽으로 이동시키기 위해서랍니다.

그렇다면 사람은 왜 머리를 앞뒤로 움직이지 않고도 잘 걸을 수 있는 걸까요? 흔히 사람은 팔만 흔들며 걷는다고 생각하지만 실제로는 목, 어깨, 허리 등 거의 모든 관절을 사용해서 걸어요. 그래서 몸의 무게중심을 이동시키는 방법도 체형마다 다르고, 그에 따라 걸음걸이도 달라지는 거랍니다.

[다운로드 : 비탈길 오르는 바퀴 도면1]

[다운로드 : 비탈길 오르는 바퀴 도면2]

글 : 유기현 과학칼럼니스트
저작자 표시 비영리 변경 금지
신고
사용자 삽입 이미지
아빠, 하늘 오래 나는 종이비행기 하나 만들어 주세요.”
“종이비행기? 아니 갑자기 웬 종이비행기?” 퇴근해서 집에 들어오자마자 양과장의 바지를 잡고 말하는 현민이를 보고 놀란 양과장이 되물었다.
“친구들이 만든 종이비행기는 멀리 잘 날아가는데 내가 만든 종이비행기는 자꾸 땅에 헤딩만 해요.” 풀이 죽어 말하는 현민이에게 양과장은 평범한 종이비행기보다 좀 더 오래 날고 안정적으로 잘 날아가는 종이비행기를 만들어 주기로 마음먹었다.

저녁밥을 먹은 뒤 양과장은 현민이를 불렀다.
“현민아, 우리 아주 멀리 날아가는 종이비행기 한번 만들어 볼까?”
“네~ 아빠 빨리 만들어 주세요!”
“그래~ 우리 같이 만들어 보자.”
양과장과 함께 종이비행기를 만들던 현민이가 문득,
“그런데 아빠, 비행기는 어떻게 하늘을 나는 거에요?”라며 궁금해했다.
“아빠가 비행기가 나는 원리를 설명해 줄게. 비행기는 크게 4가지 힘으로 하늘을 난단다. 그것은 바로 추력, 항력, 양력, 중력인데, 이 4개의 힘은 각각 비행기의 앞, 뒤 그리고 위, 아래로 작용을 하지.”

“그럼 그 추력은 무엇을 말하는 거에요?”
“요 녀석 급하기는…. 우선 추력은 비행기에 달린 제트엔진이나 프로펠러 엔진을 통해 앞의 공기를 끌어당겨 뒤로 보내면서 비행기를 앞으로 나아가게 하는 힘을 말해. 그리고 항력은 이에 대한 반대의 힘으로 비행기가 앞으로 나아가지 못하게 하는 힘이지. 이를테면 공기의 저항이 바로 항력이라 말할 수 있어. 그리고 공기의 힘으로 비행기를 위로 떠올리는 힘을 양력이라 한다면 비행기를 지상으로 잡아당기는 힘을 중력이라고 한단다. 이 4가지 힘은 서로 주거니 받거니 하면서 비행기를 위로 올리기도 하고 내리기도 하고 앞으로 나아가게 만들기도 해.”

“아웅~ 이해가 잘 안 돼요. 좀 더 쉽게 설명해 주세요.”
“알았다. 그럼 예를 들어 설명해 줄게. 일단 비행기 앞의 프로펠러가 돌면서 공기를 밀어내면 비행기는 앞으로 나아가려는 추력이 생겨. 하지만 앞으로 나아갈 뿐이지 위로 뜰 수는 없단다. 이 추력 때문에 비행기 날개 주위로 공기의 흐름이 빨라지게 되는데, 이때 비행기의 날개에서 양력이 생겨 하늘로 뜰 수 있지. 이 양력은 베르누이 법칙에 의해서 비행기가 뜰 수 있는 힘을 얻게 되는 거고.”
과학향기링크“베르누이 법칙이요?”

“응. 베르누이 법칙이란 유체에 작용하는 압력이 유체가 빨리 흐르면 작아지고, 유체가 느리게 흐르면 그 압력이 커진다는 법칙이야. 비행기 날개에 이 법칙을 적용해 보면 어떻게 비행기가 뜰 수 있는지 알 수 있지. 현민아! 전에 우리가 공항에서 본 비행기 날개는 어떻게 생겼었는지 기억하니?”
“네~ 비행기 날개 윗면은 유선형의 둥근 모습이고 아랫면은 평평했어요.”
“그래, 잘 봤다. 추력으로 밀어낸 공기의 흐름이 이 날개를 지나면서 비행기가 하늘로 붕 뜨는 마술이 일어난단다. 그 이유는 날개 위로 올라 이동하는 공기는 속도가 빨라지고 아래로 지나가는 공기는 위의 공기보다 상대적으로 낮은 속도로 이동하기 때문이야. 이때 베르누이 법칙에 의해 날개 위의 압력은 낮아지고 아랫부분의 압력은 커져. 바로 이런 압력의 차이 때문에 날개가 위로 들려 올려지게 되고 비행기가 뜰 수 있게 되는 것이지.”

“정말 그런 공기의 힘으로 그렇게 무거운 비행기가 뜰 수 있는 거예요?”
“그럼~ 실제로 대형 비행기가 하늘을 날기 위해서는 추력과 날개의 양력 그리고 날개 끝 부분에서 위아래로 움직이는 플랩이라고 말하는 보조 날개 등이 복잡하게 작용해야 가능하지만 기본 원리는 앞서 말한 추력과 양력으로 나는 거라 볼 수 있단다.”
“와! 정말 신기해요. 그럼 아빠, 우리가 만든 종이비행기도 정말 잘 날 수 있겠죠?”
“공기의 흐름을 잘 제어할 수 있는 비행기를 만든다면 아주 멀리 잘 날 수 있을 거야.”
“빨리 만들어서 날려봐요. 어서요.”
“알았어. 이 녀석아 하하~”


[실험방법]
준비물 :
- 1번 비행기 : A4지 1장, 스카치테이프
- 2번 비행기 : 좀 두껍고 빳빳한 종이 2장(잡지 커버 정도 두께), 빨대 2개, 스카치테이프

[진행순서 - 1번 종이비행기]
1. 4A지 종이를 넓은 면을 위아래로 둔 다음 밑 부분을 약 3cm 정도로 접는다.
2. 3cm로 접은 부분을 다시 위로 접어 A4지의 중간 부분까지 갈 정도로 계속 접는다.
3. 접힌 방향을 위로 한 상태에서 원통이 되도록 종이 양 끝 부분을 스카치테이프로 붙인다.
4. 이렇게 제작된 종이비행기를 날린다.
(그냥 날리게 되면 잘 날아가지 않는다. 던질 때 비행기가 회전할 수 있도록 부드러운 손목 스냅으로 회전을 주면 안정적으로 날아간다. 던지는 요령이 필요하다.)

[진행순서 - 2번 종이비행기]
1. 두꺼운 종이를 길게 자른다.
- 한 장은 세로 7cm 가 되도록 자르고 한 장은 세로가 4cm 정도 되도록 자른다.
2. 이렇게 자른 종이를 각각 끝 부분을 붙여 2개의 원통이 되게 한다.
3. 원통의 윗부분과 아랫부분을 표시한 뒤 빨대를 이용해 두 개의 원통을 연결한다.
(이때 빨대의 위치가 정확하게 원통의 윗부분과 아랫부분(180도)에 연결 될 수 있도록 한다. 만약 빨대의 길이나 위치가 차이가 나면 종이비행기가 똑바로 날지 못하고 한쪽으로 휘게 된다. 이때 종이비행기 앞부분에 클립을 끼우면 좀 더 안정적인 비행이 가능하다.)
4. 이렇게 제작된 종이비행기를 날린다.


[실험 Tip]
- 기본 종이비행기의 경우 날개는 넓지만 날개가 움직이지 않도록 버텨주는 힘이 없기 때문에 공기의 양력을 유지하기 어렵다. 하지만 이렇게 제작된 종이비행기의 경우 비행기를 앞으로 날려 보내는 추력으로 인해 발생한 공기의 흐름을 원통 모양의 날개가 안정적으로 유지해 주기 때문에 양력을 유지하는데 유리하다.

글 : 양길식 과학칼럼리스트

사용자 삽입 이미지


ndsl링크
 <출처 : 한국과학기술정보연구원 >

글이 유익하셨다면 KISTI의 과학향기를 구독해 보세요

신고
1 
BLOG main image
생활에 밎줄 긋는 과학이야기♡ -KISTI의 과학향기-
by 과학향기

카테고리

분류 전체보기 (1178)
과학향기 기사 (892)
과학향기 이벤트 (1)
과학향기 독자참여 (1)
이런주제 어때요? (1)

달력

«   2017/12   »
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            
tistory!get rss Tistory Tistory 가입하기!
Clicky Web Analytics

티스토리 툴바