우유 섭취를 위한 현명한 자세

2014년 10월 스웨덴에서 우유와 관련된 대규모 연구 결과가 발표되면서 ‘우유 해악론’이 본격적으로 달아오르기 시작했다. 이 연구 결과를 한 마디로 요약하면 ‘우유는 몸에 해롭다’는 것이다. 우유를 많이 마신 사람들일수록 암과 심혈관 질환의 발생률이 올라갔으며, 그 결과 자연스럽게 사망 위험도 높아졌다는 것이다. 그렇다면 정말로 우유는 몸에 해로운 것일까?

이 문제에 대해서 이야기하기 위해서는 먼저 우리가 우유 혹은 우유(牛乳)로 대표되는 동물의 젖(인간은 소 이외에도 양, 산양, 염소, 말, 낙타, 야크, 물소 등의 젖을 식용으로 이용했다. 이 글에서 우유는 동물의 젖을 대표하는 용어로 사용된다)을 언제부터 먹기 시작했는지 알아볼 필요가 있다. 인류가 동물들을 길들여 가축화시키기 시작한 것은 신석기 혁명이 시작된 1만 년 전부터였지만, 오랫동안 우유를 먹을 생각은 하지 못했다. 대개의 성인들에게 우유는 영양 만점 간식이기는커녕, 소화 불량과 설사를 일으키는 일종의 식중독 물질로 기능하기 때문이다. 대부분의 성인들이 우유를 소화시키지 못하는 이유는 우유 속에 존재하는 유당(乳糖, lactose) 때문이다. 유당이란 포도당과 갈락토오스가 결합된 이탄당으로, 포유류의 젖 속에만 존재하는 형태의 당분이라 이런 이름이 붙었다. 물론 사람 역시 포유류이므로 모유 속에도 유당이 존재한다. 그것도 우유보다 훨씬 더 많이.

사실 유당은 포유동물의 아기들에게는 매우 중요한 영양 공급원이다. 하지만 유당 그대로는 이용할 수가 없기 때문에 락타아제(lactase)라는 효소를 이용해 유당을 포도당과 갈락토오스 형태로 쪼개어 이용한다. 포유동물의 아기들은 누구나 젖을 먹고 자라기에 락타아제를 분비하는 능력을 가지고 태어난다. 락타아제의 생성 유무는 우유를 먹을 수 있느냐 없느냐를 가리는 중요한 기준이 된다. 락타아제를 만들 수 없는 이들에게 우유는 안 먹느니만 못한 물질이 되기 때문이다. 이런 경우 유당은 분해, 흡수되지 않은 채 소화 기관을 그대로 통과하게 되고, 결국에는 소장에서 장내 미생물의 먹잇감으로 제공된다. 락타아제를 분비하는 장내 미생물들은 소화되지 않은 채 대량으로 들어온 유당에 환호하며 달려들지만, 사람은 이들이 한꺼번에 유당을 분해하는 과정에서 발생하는 부작용으로 배에 가스가 차고 갑작스런 설사를 하는 증상, 즉 유당 불내증(lactose intolerance)으로 고생을 하게 된다.

여기서 흥미로운 것은 사람은 처음부터 유당 불내증을 가지고 태어나지는 않는다는 것이다. 심지어 모유에는 우유보다 유당이 2배나 더 들어 있지만, 아기들이 유당 불내증으로 고생하는 경우는 거의 없다. 사람의 DNA 속에는 유당을 분해하는 효소인 락타아제를 만들어내는 유전자가 존재하고, 아기들은 이 락타아제를 만들어내어 유당을 문제없이 소화한다. 하지만 락타아제는 대개 성인이 되면서는 더 이상 분비되지 않는다. 유당은 젖 속에만 들어 있고, 자연 상태에서는 성인이 되어서 젖을 먹는 일은 거의 없기 때문에 락타아제가 존재할 이유가 없기에 사람들이 나가버린 빈방의 불을 끄는 것처럼 락타아제 유전자의 스위치가 꺼지는 것이다. 그래서 오랫동안 우유는 좋은 열량 공급원이 될 수 없었다. 우유가 인류의 역사에서 중요한 먹거리의 역할을 차지하게 된 것은 두 번에 걸친 ‘우유 혁명’이 일어난 후였다.

첫 번째 우유 혁명은 7000여 년경, 몸 밖에서 시작됐다. 우유를 가공해 ‘몸에 해롭지 않은 것’으로 바꾸는 비법을 알아낸 것이다. 일단 갓 짠 우유를 상온에 방치하면 우유 위에 크림층이 형성된다. 이것을 가공한 것이 버터인데, 버터는 락토오스(lactose) 성분이 거의 들어 있지 않아 먹어도 문제가 없다. 또한 우유를 발효시켜 만든 요구르트나 치즈의 경우, 발효 과정에서 미생물의 먹잇감으로 유당이 분해되기 때문에 유당으로 인한 소화 불량의 걱정이 없다. 이처럼 우유를 가공해 유제품을 먹을 수 있게 된 것은 인류의 서식지를 북쪽 추운 지방과 건조한 목초지로 확장시키는 데 결정적인 역할을 하게 된다. 이것이 가능해진 것은 인간이 수렵, 채집, 농경이라는 3대 식량 생산 공정에 낙농(酪農)이라는 새로운 공정을 추가했기 때문이었다. 인간이 먹기에는 적합지 않은 거친 풀들만 무성한 들판과 야산이 더 이상 황무지가 아니라 소나 양을 키워 젖을 얻게 하는 기름진 목초지로 기능함을 알았으니 말이다.

두 번째 우유 혁명은 그로부터 약 천 년이 지난 후에 등장한다. 낙농이 발전하면서 유제품을 먹는 수요가 늘면서, 우유 그 자체를 마시는 습관도 생겨났다. 초기에는 아직은 유당 분해 능력이 있는 어린아이로부터 마시기 시작했을 것이다. 이 아이들은 자라면서 꾸준히 우유를 마셨고, 이러한 환경의 자극은 락타아제의 분비를 지속시키게 만들었을 것이다. 이것이 대를 이어 반복되면서 낙농을 주로 하는 민족들 사이에는 어른이 돼서도 락타아제 유전자(LP 유전자) 스위치가 꺼지지 않는 돌연변이를 지닌 구성원들의 수가 늘어나게 된다. 실제로 낙농이 발달한 영국과 북유럽 국가의 주민들의 유전적인 구성을 살펴보면, LP 유전자 지속 돌연변이의 비율이 90%를 상회한다. 반대로 우유를 마시는 관습이 거의 없었던 일본이나 남부 아시아 국가의 성인들에게 이 돌연변이의 발생 확률은 0%에 가깝다.

식량이 부족했던 시절, 우유를 소화시킬 수 있는 능력은 일종의 생존 경쟁력이 됐을 것이다. 특히나 우유는 포유동물이 어린 새끼들을 단기간에 성장시킬 수 있도록 하기 위해 단백질과 지방의 함유량이 높게 조성돼 있기 때문에, 유당 불내증만 없다면 섭취량 대비 고칼로리, 고단백, 고지방의 3박자가 갖춰진 좋은 음식이었을 것이다. 게다가 우유 속에 든 칼슘과 비타민 D는 햇빛이 부족한 고위도 지방에서도 구루병과 골다공증에 걸리지 않고 건강을 유지하도록 도움을 주었을 테니 이 역시 장점으로 작용했을 것이다. 인류학자들은 성인이 우유를 마실 수 있게 만드는 LP 유전자 지속 돌연변이는 춥고 건조한 유럽 지역에 인류가 정착하는 데 있어서 결정적인 역할을 했다고 본다. 이는 전통적으로 ‘우유는 몸에 좋은 음식’이라는 가치관을 만드는 데 일조했다.

최근 들어 제시되는 ‘우유 해악론’은 인류를 둘러싸고 있는 상황이 수천 년 전과는 다르게 변화됐다는 데 기원을 두고 있다. 우유는 여전히 칼슘과 철분을 비롯한 비타민과 무기질의 좋은 공급원이며, 양질의 단백질이 포함된 ‘영양학적으로 우수한 식품’이다. 하지만 영양학적으로 우수하다는 말이 영양 과잉으로 인한 부작용을 일으킬 수 있다는 말과 동일 시 되는 것이 현실이다. 실제로 우유가 건강에 악영향을 미친다는 연구 결과가 발표된 곳은 영양소 부족이 아니라, 영양소 과잉이 문제가 되는 지역이다. 우리는 이제 우유 외에도 충분한 칼로리와 영양소를 섭취하며, 부족한 비타민과 무기질은 간편한 알약으로 대치하는 시대를 살고 있다. 이런 경우, 지나친 우유의 섭취는 지방과 열량의 과다 섭취로 이어지게 되고, 이는 비만과 성인병의 발생 비율을 높이는 하나의 원인이 된다.

게다가 낙농업이 하나의 거대 산업이 된 현대 사회에서 우유는 공장에서 생산되는 제품처럼 취급돼 생산성을 높이기 위한 다양한 방법들-우유 생산량을 증가 시키기 위한 성장 호르몬 유도제 투입, 기형적이고 비윤리적인 사육 시스템, 유전자 조작을 통한 형질 전환 등-과 얽히게 됐으며, 이렇게 만들어진 우유 속에는 자연 속에서 방목된 가축의 젖에서는 존재하지 않았던 성분들이 포함되는 경우가 종종 발생하는 것도 사실이다.

이제 우리에게 필요한 자세는 무조건적인 ‘우유 예찬론’과 ‘우유 해악론’이 아니라, 그 사이에서 자신에게 맞는 적절한 우유 섭취량과 섭취 방법을 결정하는 현명한 우유 섭취의 자세가 아닐까. 아인슈타인의 이름을 우유명으로만 기억하지 말고, 아인슈타인처럼 합리적이고 과학적인 분석을 통해 내게 맞는 우유를 섭취하는 자세 말이다.

글 : 이은희 과학칼럼니스트

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
“어? 유통기한이 지났네. 으…. 아까워.”
초보주부 김 씨는 어제 사놓은 우유를 꺼내 마실 참이었다. 하지만 덜렁거리는 성격 탓에 유통기한을 꼼꼼히 못 살핀 것이 죄. 산 지 하루 만에 우유를 버리게 생기게 된 것이다. 하지만 피 같은 돈을 주고 산 우유를 버릴 수는 없는 노릇. 김 씨는 어떻게 하면 우유를 버리지 않고 활용할 수 있을 지 생각하기 시작했다.

‘아! 우유로 바닥을 닦으면 때가 잘 진다던데…. 바닥이나 닦아볼까? 아냐…. 괜히 상한 우유 때문에 안 할 일을 더 할 수는 없지. 에라~ 모르겠다. 그냥 버려야지.’
김 씨가 싱크대에 대고 우유를 버리려는 찰나. 멀리서 다급한 목소리가 들려왔다.
“당신 지금 뭐하는 거야!”
바로 김 씨의 남편인 짠돌 씨였다.
“유통기한이 넘어서 버리는 거야”
“하루밖에 안 지났는데 왜 버려. 아깝잖아.”
“그럼 당신이 마셔”
“음…그건 곤란한데. 그럼 내가 우유를 이용해 당신을 위한 선물을 만들어 주지”
“어떻게?”
“식초, 냄비, 우유만 준비하면 돼. 당신은 잠자코 보기만 하라고.”

김 씨의 눈이 휘둥그레졌다.
“우와 여보. 우유가 플라스틱이 됐네. 어떻게 이렇게 된 거야?”
“그건 바로 우유 속에 든 카제인이라는 성분 때문이야. 우유 속에 들어 있는 단백질 가운데 약 80%가 카제인 단백질인데 카제인은 열이나 산에 굉장히 약해. 그래서 가열한다든가 식초를 넣게 되면 변성이 일어나 굳게 되지.”
“그럼 카제인 단백질만 이런 성질을 갖고 있는 거야?”
“아니야. 모든 단백질은 산을 만나면 응고가 돼. 하지만 특이하게도 카제인과 산의 반응은 아교처럼 접착성이 생기기 때문에 플라스틱으로 만들 수 있어. 이런 성질을 이용해 깨진 그릇의 틈을 붙일 수도 있지. 즉 접착제로 사용할 수 있다는 말이야.”

“정말 신기하네. 왜 응고가 되는지 좀 더 자세하게 말해줘.”
“음~ 그럼 쉽게 말해줄게. 우유 속의 카제인을 구슬이라고 하자. 이 구슬을 화학에서는 혼자 있는 분자라는 뜻으로 모노머라고 하고 구슬이 모여 목걸이가 되면 폴리머라고 해. 그런데 대부분의 모노머는 아주 자존심이 강해서 폴리머가 되기를 싫어해. 그래서 정상 상태의 우유에는 이런 모노머 상태의 카제인이 둥둥 떠다니지. 하지만 식초를 넣게 되면 이야기가 달라져. 음이온 상태의 모노머가 식초 속의 양이온인 산과 만나 성질이 달라지지. 모노머 상태의 카제인이 서로 달라붙어 폴리머로 변하는 거야. 카제인 구슬이 모여 목걸이가 되는 셈이지.”

“그럼 상한 우유에 덩어리가 지는 현상도 같은 원리야?”
“그렇지~! 우유 속의 젖산균이 젖산을 만들어내 우유가 산성이 되므로 카제인이 응고되는 것이지. 우리가 실험한 우유는 유통기한이 약간 지나서 덩어리를 볼 수 없었지만 만약 많이 상한 우유로 플라스틱을 만든다면 이미 응고가 일어났기 때문에 식초를 조금만 넣어도 돼. 하지만 상한 우유는 냄새가 지독하니까 그리 추천할만한 건 아냐. 그리고 참고로 말하자면 우유가 상하면 암모니아도 생기는데, 암모니아는 때를 잘 녹이는 성질이 있고 휘발성분도 있기 때문에 상한 우유로 타일이나 마룻바닥을 닦으면 잘 닦여.”

“근데 지금 플라스틱은 천연가스나 석유로 만들잖아. 왜 우유로 안 만드는 거야?”
“옛날에는 카제인으로 단추 같은 간단한 플라스틱을 만들었어. 하지만 카제인으로 만드는 것보다 석유나 천연가스로 만드는 게 더 값이 싸기 때문에 더 이상 만들지 않게 된 것이지.”
“오~! 여보, 굉장해. 언제 그런 과학지식을 공부했어?”
“(후훗~ 사실은 과학향기를 열심히 읽었을 뿐인데….)뛰어난 두뇌와 손재주를 타고 났기 때문이 아닐까?”
“오! 그럼 뛰어난 손재주로 딸기, 초코, 바나나 우유를 이용해 무지개빛 토끼를 만들어 줘.”
짠돌 씨는 괜히 잘난 척 한 덕분에 그날 밤새도록 눈물의 토끼 인형을 만들었다.

글 : 김맑아 과학전문 기자



[실험방법]
1. 우유를 냄비에 넣고 적당히 뜨거울 때까지 끓인다. 너무 끓으면 응고가 되므로 많이 끓이지 않도록 조심하자. 200ml는 한 3분 정도면 끓는다.
2. 데워진 우유에 식초 1티스푼을 넣고 잘 저은 다음 식힌다.
3. 우유가 식어서 하얗게 알갱이가 생기면 체로 거른다. 체가 없으면 못쓰게 된 스타킹을 이용하면 된다. 이 때 물기를 너무 많이 제거하면 빨리 건조되나 모양 만들기가 어렵고 너무 물기가 많으면 건조시간이 오래 걸리므로 적당히 조절하자.
4. 걸러 낸 내용물을 여러 가지 도구를 이용해 원하는 모양을 만든다. 반죽을 많이 하면 알갱이들이 잘 뭉쳐 원하는 모양을 예쁘게 만들 수 있다. 참고로 짠돌 씨는 토끼를 좋아하는 아내를 위해 토끼 인형을 만들었다.
5. 바람이 잘 통하는 장소에 놔둬 말리자. 짧게는 2일 길게는 일주일 정도면 딱딱하게 굳는다. 도저히 못 기다릴 것 같은 사람은 드라이기나 전자레인지를 적절히 이용하면 된다.

[실험동영상 보기]


저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
1 
BLOG main image
생활에 밎줄 긋는 과학이야기♡ -KISTI의 과학향기-
by 과학향기

카테고리

분류 전체보기 (1178)
과학향기 기사 (892)
과학향기 이벤트 (1)
과학향기 독자참여 (1)
이런주제 어때요? (1)

달력

«   2017/06   »
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  
tistory!get rss Tistory Tistory 가입하기!
Clicky Web Analytics

티스토리 툴바